Silica-based Composite Membranes for Methanol Fuel Cells Operating at High Temperature

  • A. Alvarez Centro de Investigación y Desarrollo tecnológico en Electroquímica, Parque Tecnológico Querétaro, Sanfandila, Pedro Escobedo, C. P. 76703 Querétaro
  • C. Guzman Centro de Investigación y Desarrollo tecnológico en Electroquímica, Parque Tecnológico Querétaro, Sanfandila, Pedro Escobedo, C. P. 76703 Querétaro
  • C. Peza-Ledesma División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C. P. 76010 Querétaro
  • Luis A. Godinez Centro de Investigación y Desarrollo tecnológico en Electroquímica, Parque Tecnológico Querétaro, Sanfandila, Pedro Escobedo, C. P. 76703 Querétaro
  • R. Nava División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C. P. 76010 Querétaro
  • S. M. Duron-Torres UACQ-UAZ, CU Siglo XXI-Edificio 6, Km. 6 Carr. Zac.-Gdl., La Escondida, Zacatecas, Zac. C.P. 98160
  • J. Ledesma-Garcia División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C. P. 76010 Querétaro
  • L. G. Arriaga Centro de Investigación y Desarrollo tecnológico en Electroquímica, Parque Tecnológico Querétaro, Sanfandila, Pedro Escobedo, C. P. 76703 Querétaro
Keywords: composite membrane, NafionDMFC, High temperature DMFC

Abstract

In this work, composite membranes were prepared from a mixture of Nafion® ionomer with mesoporous (SBA-15) and microstructured silica (SiO2). The silica-based materials were synthesized using the sol-gel technique and their properties were characterized by TEM, BET, SEM and XRD. A glass cell with two chambers was used to evaluate the permeability of methanol of the composite membranes and its performance was compared with a commercial Nafion 115 membrane. The composite membranes showed smaller value of methanol permeability (around 19%) than that obtained when was used a commercial membrane. In terms of the fuel cell performance, the composite membranes showed a larger maximum power density (62 and 29 mWcm-2 for the SiO2 and SBA-15 composite membrane respectively) than that obtained for the commercial membrane at high temperature conditions (100°C).

References

V. Baglio, A.S. Aricò, A. Di Blasi, V. Antonucci, P.L. Antonucci, S. Licoccia, E. Traversa, F.Serraino Fiory, Electrochim. Acta, 50, 1241 (2005).

V. Baglio, A.Di Blasi, A.S Aricò, V. Antonucci, P.L. Antonucci, F. Nannetti, V. Tricoli, Electrochim. Acta, 50, 5181 (2005).

W. Xu, T. Lu, C. Liu, W. Xing, Electrochim. Acta, 50, 3280 (2005).

R. Gosalawit, S. Chirachanchai, S. Shishatskiy, S.P. Nunes, Solid State Ionics, 178, 1627 (2007).

C-Y Chen, J.I. Garnica-Rodriguez, M.C. Duke, R.F. Dalla Costa, A.L. Dicks, J.C. Diniz da Costa, J. Power Sources, 166, 324 (2007).

V. Neburchilov, J. Martin, H. Wang, J. Zhang, J. Power Sources, 169, 221 (2007).

S.W. Tay, X. Zhang, Z. Liu, L. Hong, S. Hwa Chan, J. Membrane Sci., 321, 139 (2008).

C. Li, G. Sun, S. Ren, J. Liu, Q. Wang, Z. Wu, H. Sun, W. Jin, J. Membrane Sci., 272, 50 (2006).

J. Wu, Z. Cui, C. Zhao, H. Li, Y. Zhang, T. Fu, H. Na, W. Xing, Int. J. Hydrogen Energ., 34, 6740 (2009).

Y-F. Lin, C-Y Yen, C-C. Ma, S-H Liao, C-H Lee, Y-H Hsiao, H-P Lin, J. Power Sources, 171, 388 (2007).

J. González-Hernández, J.F.Pérez Robles, F. Ruiz, J.R. Martínez, Sup.Vac., 1, 11 (2000).

R. Pérez-Hernández, J. Arenas-Alatorre, D. Mendoza-Anaya, A. Gómez-Cortés y G. Díaz., Rev. Mex. Fís., 50, 80 (2008).

K. Flodstrom, V. Alfredsson, Micropor. Mater., 59, 167 (2003).

R. Huirache-Acuña, B. Pawelec, E. Rivera-Muñoz, R. Nava, J. Espino, J.L.G. Fierro, Appl. Catal. B-Environ, 168, 92 (2009).

R. Nava, B. Pawelec, P. Castaño, M.C. Álvarez-Galván, C.V. Loricera, J.L.G. Fierro, Appl. Catal. B-Environ, 92, 154 (2009).

A.S. Aricò, V. Baglio, A. Di Blasi, P. Creti, P.L. Antonucci, V. Antonucci, Solid State Ionics, 161, 251 (2003).

S. Reichman, L. Burstein, E. Peled, J. Power Sources, 179, 520 (2008).

A. Saccà, I. Gatto, A. Carbone, R. Pedicini, E. Passalacqua, J.Power Sources, 163, 47 (2006).

Tao Li, Yong. Yang, J. Power Sources, 187, 332 (2009).

R.G. Rodríguez Avendaño, J.A. De Los Reyes, T. Viveros, J.A. Montoya De La Fuente, Catal. Today, 148, 12 (2009).

X. Feng, G.E. Fryxell, L.-Q. Wang, A.Y. Kim, J. Liu, K.M. Kemner, Science, 276, 923 (1997).

J. Liu, X. Feng, G.E. Fryxell, L.-Q. Wang, A.Y. Kim, M. Gong, Chem. Eng. Technol., 21, 97 (1998).

C.E. Fowler, S.L. Burkett, S. Mann, Chem. Commun., 1769 (1997).

V. Di Noto, R. Gliubizzi, E. Negro, G. Pace, J. Phys. Chem. B, 110, 24972 (2006).

G. Gnana Kumar, A.R. Kim, K. Suk Nahm, R, Elizabeth, Int. J. Hydrogen Energ., 34, 9788 (2009).

v14n02a04_p087-091
Published
2011-04-07
Section
Full Articles