Internal Resistance and performance of Microbial Fuel Cells: Influence of Cell Configuration and Temperature

  • A. L. Vazquez-Larios Environmental Biotechnology and Renewable Energies R&D Group, Dept. Biotechnology & Bioengineering, Centro de Investigación y de Estudios Avanzados del I.P.N., P.O. Box 14-740, México D.F. 07000
  • O. Solorza-Feria Dept. of Chemistry, Centro de Investigación y de Estudios Avanzados del I.P.N. Mexico D.F.
  • G. Vazquez-Huerta Dept. of Chemistry, Centro de Investigación y de Estudios Avanzados del I.P.N. Mexico D.F.
  • E. Rios-Leal Environmental Biotechnology and Renewable Energies R&D Group, Dept. Biotechnology & Bioengineering, Centro de Investigación y de Estudios Avanzados del I.P.N., P.O. Box 14-740, México D.F. 07000
  • N. Rinderknecht-Seijas ESIQIE del IPN, División de Ciencias Básicas, México D.F.
  • H. M. Poggi-Varaldo Environmental Biotechnology and Renewable Energies R&D Group, Dept. Biotechnology & Bioengineering, Centro de Investigación y de Estudios Avanzados del I.P.N., P.O. Box 14-740, México D.F. 07000
Keywords: internal resistance, impedance spectroscopy, microbial fuel cell, polarization curve, temperature

Abstract

The objectives of this work were (i) to determine the effect of electrode spacing and architecture of microbial fuel cells (MFCs) on their internal resistance (Rint) using two methods (polarization curve, PolC, and impedance spectroscopy, IS); and (ii) to evaluate the effect of operation temperature (35 and 23°C) of MFCs on their internal resistance and performance during batch operation. Two types of MFCs were built: MFC-A was a new design with extended electrode surface (larger ξ, specific surface or surface area of electrode to cell volume) and the assemblage or “sandwich” arrangement of the anode-PEM-cathode (AMC arrangement), and a standard single chamber MFC-B with separated electrodes. In a first experiment Rint of MFC-A was consistently lower than that of MFC-B at 23oC, irrespective of the method, indicating the advantage of the design A. Rint determined by the two methods agreed very well. The method based on IS provided more detailed data regarding resistance structure of the cells in only 10% of the time used by the PolC. Rint of MFC-A determined by PolC at 35oC resulted 65% lower than that of MFC-A. The effect of temperature on Rint was distinct, depending upon the type of cell; decrease of temperature was associated to an increase of Rintin cell A and an unexpected decrease in cell B. In a second experiment, the effect of temperature and cell configuration on cell batch performance was examined. Results showed that performance of MFC-A was significantly superior to that of MFC-B. Maximum volumetric power PV and anode density power PAn of the MFC-A were higher than those of the MFC-B (4.5 and 2.2 fold, respectively). The improvement in PV was ascribed to the combined effects of increased ξ and decrease of Rint. In spite of opposing trends in cells’ Rint, performance of both cells in terms of PVave improved at ambient temperature; furthermore, MFC-A outcompeted the standard cell B at both temperatures tested. The use of the new cell A would translate into a significant advantage since the power associated to heating the cells at 35°C could be saved by operation at ambient temperature

References

B.E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, K. Rabaey, Environ. Sci. Technol., 40, 5181 (2006).

H.M. Poggi-Varaldo, A. Carmona-Martínez, A.L. Vázquez-Larios, O. Solorza-Feria, J. New Mater. Electrochem. Syst., 12, 49 (2009).

H. Rismani-Yazdi, S.M. Carver, A.D. Christy, O.H. Tuovinen, J. Power Source, 180, 683 (2008).

Z. He, N. Wagner, S.D. Minteer, L.T. Angenent, Environ. Sci. Technol. 40, 5212 (2006).

P. Liang, X. Huang, M-Z Fan, X-X Cao, C. Wang, Appl. Microbiol. Biotechnol., 77, 551 (2007).

S. Ouitrakul, M. Sriyudthsak , S. Charojrochkul , T. Kakizono, Biosens. Bioelectron., 23 721 (2007).

Z. Du, H. Li, T. Gu, Biotechnology Advances, 25, 464 (2007).

A.L. Vázquez-Larios, E. Ríos-Leal, O. Solorza-Feria, H.M. Poggi-Varaldo, “X Congreso Internacional de la Sociedad Mexicana del Hidrógeno- Energías Renovables” y “IV Congreso Internacional de Uso Racional y Eficiente de la energía-CIUREE 2010”, 2010.

A.L. Vazquez-Larios, O. Solorza-Feria, G. Vazquez-Huerta, F. Esparza-Garcia, E. Rios-Leal, N. Rinderknecht-Seijas, H.M. Poggi-Varaldo, J. New Mat. Electrochem. Systems, 13, 219 (2010).

D.Q. Jiang, B.K. Li, Water Sci. Technol., 59, 557 (2009).

E.J. Rodríguez-Varela, O. Solorza-Feria, E. Hernández-Pacheco, “Celdas de combustible”. Capítulo 7 1st edn., Canada, 2010.

G.W. Castellan, “Physical Chemistry”, 1st edn., 3rd printing, Addison-Wesley Publ. Co. Reading, MA, USA, 1969, p 594.

Y. Guerasimov, V. Dreving, E. Eriomin, A. Kiseliov, V. Lebedev, G. Panchenkov, A. Shliguin, “Curso de Quimica-Física”, Ed. MIR, Moscow, Volume 2, 1971, p 446.

R.B. Bird, W.E. Stewart, E.N. Lightfoot, “Transport Phenomena”. John Wiley & Sons, Inc., New York. Wiley International Edition, 1960, p 515.

J.E. Bayley, D.F. Ollis, “Biochemical Engineering Fundamentals”. 2nd edn., McGraw-Hill Publ. Co., New York, USA. 1986.

B. Min, O.B. Román, I. Angelidaki, Biotechnol. Letters, 30, 1213 (2008).

X. Wang, Y.J. Feng, H. Lee, Water Sci. Technol., 57, 1117 (2008).

D. Halliday, R. Resnick, J. Walker, “Fundamentals of Physics”, 7th ed. John Wiley & Sons Co., New York, 2004.

I. Valdez-Vazquez, E. Ríos-Leal, F. Esparza-García, F. Cecchi, H.M. Poggi-Varaldo, Int. J. Hydrogen Energy, 30, 1383 (2005).

H.M. Poggi-Varaldo, L. Valdés, G. Fernández-Villagómez, F. Esparza-García, Water Sci. Technol., 35, 197 (1997).

R. Sparling, D. Risbey, H.M. Poggi-Varaldo, Int. J. Hydrogen Energy, 22, 563 (1997).

APHA, “Standard Methods for the Examination of Water and Wastewater”, American Public Health Association, Washington DC, USA, 1989.

S.-J. You, N.-Q. Ren, Q.-L. Zhao, J.-Y.Wang, F.-L. Yang, Fuel Cells, 9, 588 (2009).

H. Liu, S. Cheng, B.E. Logan, Environ. Sci. Technol., 39, 5488 (2005).

T. Song, Y. Xu, Y. Ye, Y. Chen, S. Shen, J. Chem. Technol. Biotechnol., 84, 356 (2008).

H. Liu, B.E. Logan, Environ. Sci. Technol., 38, 4040 (2004).

S. Cheng, B.E. Logan. Electrochem. Commun., 9, 492 (2007).

S.-E. Oh, B.E. Logan. Appl. Microbiol. Biotechnol., 70, 162 (2006).

S. Cheng, H. Liu, B.E. Logan. Electrochem. Commun., 8, 489 (2006).

H.J. Kim, H.S. Park, M.S. Huyun, I.S. Chang, M. Kim, B.H. Kim, Enzyme Microb., Technol., 30, 145 (2002).

D.R. Bond, D.R. Lovley, Appl. Environ. Microbiol., 69, 1548 (2003).

G. Reguer, K.D. McCarth, T. Meht, J.S. Nicol, M.T. Tuomine, D.R. Lovle, Nature, 435, 1098 (2005).

A.C. Ortega Martínez, A.L. Vázquez Larios, K. Juárez-López, O. Solorza-Feria, H.M. Poggi-Varaldo, 14th Int. Biotechnol. Symp., Rimini, Italy (2010).

v14n02a06_p099-105
Published
2011-04-04
Section
Full Articles