Green Functionalization and Supercapacitive Properties of Carbon Nanotubes by Atmospheric Pressure Non-Thermal Plasma Treatment

  • Zhihong Luo Guilin University of Technology
  • Min Zhu Guangxi Key Laboratory of Universities for Clean Metallurgy Comprehensive Utilization of Nonferrous Metal Resource, Guilin University of Technology, Guilin, 541004, PR China
  • Yuzhen Zhao Guangxi Key Laboratory of Universities for Clean Metallurgy Comprehensive Utilization of Nonferrous Metal Resource, Guilin University of Technology, Guilin, 541004, PR China
  • Kun Luo Guangxi Key Laboratory of Universities for Clean Metallurgy Comprehensive Utilization of Nonferrous Metal Resource, Guilin University of Technology, Guilin, 541004, PR China
Keywords: Atmospheric non-thermal plasma, Carbon nanotubes, Functionalization, Nitrogen doping, Supercapacitive performance

Abstract

Functionalization of carbon nanotubes proceeds by using atmospheric pressure non-thermal plasma treatment, where NH3 is used as nitrogen sources which is excited either by alternating currents (AC) or direct currents (DC). The content and species of the functional groups are analyzed by XPS which displays that heteroatom content increases 1.6 at.%, the main nitrogen groups are pyridinic nitrogen (N-6) and amino (-NH2), and HO-C=O, C=O and C-OH surface groups are also incorporated. The supercapacitive performance of the pristine CNTs, CNT-DC and CNT-AC electrodes are measured and the specific capacitance of CNTs is increased after plasma treatment, which indicate that the surface functionalization facilitate the improvement on supercapacitive properties.

References

[1] S. Iijima, Nature, 354, 56 (1991).
[2] W. Fan, Y.E. Miao, L.S. Zhang, Y.P. Huang, T.X. Liu, RSC Adv., 5, 31064 (2015).
[3] Z.H. Luo, X.Q. Zhuge, Y.Z. Zhao, M.X. He, L.H. Zhu, H.Q. Tang, K. Luo, Nano, 10, 75 (2015).
[4] T. Morishita, M. Matsushita, Y. Katagiri, K. Fukumori, Carbon, 48, 2308 (2010).
[5] L. Mao, K. Zhang, H.S.O. Chan, J.S. Wu, J. Mater. Chem., 22, 80 (2011).
[6] X.P. Lu, Y.T. Hu, L. Wang, Q.H. Guo, S.L. Chen, S.H. Chen, H.Q. Hou, Y.H. Song, Electrochimica Acta, 189, 158 (2016).
[7] J. Wu, W.W. Liu, Y.X. Wu, T.C. Wei, D.S. Geng, J. Mei, H. Liu, W.M. Lau, L.M. Liu, Electrochimica Acta, 203, 21 (2016).
[8] H.Y. Liu, H.H. Song, X.H. Chen, S. Zhang, J.S. Zhou, Z.K. Ma, J. Power Sources, 285, 303 (2015).
[9] T.T. Zhu, J. Zhou, Z.H. Li, S.J. Li, W.J. Si, S.P. Zhuo, J. Mater. Chem. A, 2, 12545 (2014).
[10]P.E. Fanning, M.A. Vannice, Carbon, 31, 721 (1993).
[11]G.Q. Ning, C.G. Xu, X. Zhu, R.F. Zhang, W.Z. Qian, F. Wei, Z.J. Fan, J.S. Gao, Carbon, 56, 38 (2013).
[12]Y.Z. Wang, Y. Liu, W. Liu, H.Y. Chen, G.X. Zhang, J.H. Wang, Mater. Lett., 154, 64 (2015).
[13]H.Q. Sun, C. Kwan, A. Suvorova, H.M. Ang, M.O. Tadé, S.B. Wang, Appl. Catal. B: Environ., 154-155, 134 (2014).
[14]H.F. Xiong, M.A. Motchelaho, M. Moyo, L.L. Jewell, N.J. Coville, Appl. Catal. A: Gen., 482, 377 (2014).
[15]J.Y. Yook, J. Jun, S.J. Kwak, Appl. Surf. Sci., 256, 6941 (2010).
[16]C.L. Chen, B. Liang, D. Liu, A. Ogino, X.K. Wang, M. Nagatsu, Carbon, 48, 939 (2010).
[17]H.R. Barzegar, E. Gracia-Espino, T. Sharifi, F. Nitze, T. Wågberg, J. Phys. Chem. C, 117, 25805 (2013).
[18]L.F. Lai, H.P. Yang, L. Wang, B.K. The, J. Zhong, H. Chou, L. Chen, W. Chen, Z. Shen, R.S. Ruoff, J. Lin, ACS Nano, 6, 5941 (2012).
[19]C.L. Wang, Y. Zhou, L. Sun, Q. Zhao, X. Zhang, P. Wan, J.S. Qiu, J. Phys. Chem. C, 117, 14912 (2013).
[20]H.L. Wang, Q.L. Hao, X.J. Yang, L. Lu, X. Wang, ACS Appl. Mater. Interfaces, 2, 821 (2010).
[21]H.Y. Liu, H.H. Song, X.H. Chen, S. Zhang, J.S. Zhou, Z.K. Ma, J. Power Sources, 285, 303 (2015).
[22]Z.Y. Lin, Y. Liu, Y.G. Yao, O.J. Hildreth, Z. Li, K. Moon, C.P. Wong, J. Phys. Chem. C, 115, 7120 (2011).
[23]L.F. Lai, L.W. Chen, D. Zhan, L. Sun, J.P. Liu, S.H. Lim, C.K. Poh, Z.X. Shen, J.Y. Lin, Carbon, 49, 3250 (2011).
[24]Z.H. Luo, L.H. Zhu, Y.F. Huang, H.Q. Synth. Met., 175, 88 (2013).
Published
2017-07-02
Section
Full Articles