Ethanol - Tolerant Pt-free Cathode Catalysts for the Alkaline Direct Ethanol Fuel Cell

  • Chakkrapong Chaiburi Institute of Chemical Engineering and Environmental Technology, Fuel Cell Systems Group, Graz University of Technology, NAWI Graz, Inffeldgasse 25C, 8010 Graz, Austria
  • Bernd Cermenek Institute of Chemical Engineering and Environmental Technology, Fuel Cell Systems Group, Graz University of Technology, NAWI Graz, Inffeldgasse 25C, 8010 Graz, Austria
  • Birgit Elvira Pichler Institute of Chemical Engineering and Environmental Technology, Fuel Cell Systems Group, Graz University of Technology, NAWI Graz, Inffeldgasse 25C, 8010 Graz, Austria
  • Christoph Grimmer Institute of Chemical Engineering and Environmental Technology, Fuel Cell Systems Group, Graz University of Technology, NAWI Graz, Inffeldgasse 25C, 8010 Graz, Austria
  • Alexander Schenk Institute of Chemical Engineering and Environmental Technology, Fuel Cell Systems Group, Graz University of Technology, NAWI Graz, Inffeldgasse 25C, 8010 Graz, Austria
  • Viktor Hacker Institute of Chemical Engineering and Environmental Technology, Fuel Cell Systems Group, Graz University of Technology, NAWI Graz, Inffeldgasse 25C, 8010 Graz, Austria

Abstract

The structure and electrochemical activity of carbon supported Pt-free cathode catalysts (Ag/C, Mn3O4/C and AgMnO2/C) are investigated by means of transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and cyclic voltammetry (CV). The catalysts display ethanol-tolerance for the oxygen reduction reaction (ORR) in 0.1 M KOH electrolyte containing ethanol at different temperatures. Because crossover of ethanol from anode to cathode through the membrane can occur in alkaline direct ethanol fuel cells (ADEFCs), selectivity of the cathode catalyst is of high importance. AgMnO2/C catalyst exhibits the highest catalytic activity toward ORR in presence of alkaline electrolytes containing ethanol.

References

[1] J. Huang, A. Faghri, J. Fuel Cell Sci. Technol., 11, 051007 (2014).
[2] J. Kemsley, Chem. Eng. News, 85, 55 (2007).
[3] M. Zhiani, H. A. Gasteiger, M. Piana, S. Catanorchi, Int. J. Hydrogen Energy, 36, 5110 (2011).
[4] G. Koscher, K. Kordesch, J. Power Sources, 136, 215 (2004).
[5] N. Wagner, M. Schulze, E. Gülzow, J. Power Sources, 127, 264 (2004).
[6] Y. Fang, X. Yang, L. Wang, Y. Liu, J. Power Sources, 267, 33 (2014).
[7] A.D. Modestov, M.R. Tarasevich, A.Y. Leykin, V.Y. Filimonov, J. Power Sources, 188, 502 (2009).
[8] Q. Tung, L. Jiang, J. Qi, Q. Jiang, S. Wang, G. Sun, Appl. Catal.: B Environ., 104, 337 (2011).
[9] Q. Wu, L. Jiang, L. Qi, L. Yuan, E. Wang, G. Sun, Electrochimica Acta, 123, 167 (2014).
[10]C. Grimmer, R. Zacharias, M. Grandi, B. Pichler, I. Kaltenboeck, F. Gebetsroither, J. Wagner, B. Cermenek, S. Weinberger, A. Schenk, V. Hacker, J. Electrochem. Soc., 163, 278 (2016).
[11]W. Sun, A. Hsu, R. Chen, J. Power Sources, 196, 627 (2011).
[12]Y. Garsany, S. Dutta, K.E. Swider-Lyons, J. Power Sources, 216, 515 (2012).
[13]J. Qiao, L. Xu, L. Ding, P. Shi, L. Zhang, R. Baker, J. Zhang, Int. J. Electrochem. Sci., 8, 1189 (2013).
[14]H. Meng, P. K. Shen, Electrochem. Commun., 8, 588 (2006).
[15]M. Chatenet, M. B. Molina-Concha, N. El-Kissi, G. Parrour, J. P. Diard, Electrochimica Acta, 54, 4426 (2009).
[16]A.C. Garcia, J.J. Linares, M. Chatenet, E.A. Ticianelli, Electrocatalysis, 5, 41 (2014).
[17]P. Han, D. M. Bartels, J. Phys. Chem., 100, 5597 (1996).
[18]D. Tromans, Ind. Eng. Chem. Res., 39, 805 (2000).
[19]W. Xing, G. Yin, J. Zhang, “Rotating Electrode Methods and Oxygen Reduction Electrocatalysts”, Amsterdam: Elsevier; 2014, p. 1-31.
Published
2017-06-07
Section
Full Articles