A Potential Hydrogen Sources from Milled Silicon Powder Activated by Lithium, and Aluminum Chloride

  • Tianchu Yin Department of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, P R China
  • Hongwei ShenTu Department of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, P R China
  • Chengqiao Xi Department of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, P R China
  • Xin Chen Department of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, P R China
  • Wenzhen Zou Department of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, P R China
  • Meiqiang Fan Department of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, P R China
Keywords: Li-Si-AlCl3 composite, hydrolysis, hydrogen generation

Abstract

A potential hydrogen source generated from milled Li-Si-AlCl3 composite was evaluated in this paper. The composite exhibits good hydrogen generation performance in water at 313–343 K, whereas pure silicon powder cannot continuously react with water under similar conditions. The hydrogen yield reaches 1300 mL hydrogen/g within 20 min, and the highest hydrogen generation rate is higher than 1200 mL hydrogen/g min within the first minute of hydrolysis. The hydrogen generation performance increases with increasing concentrations of lithium and aluminum chloride. Microstructure analysis indicates that silicon activity increases due to decreased particle size and distribution of lithium and aluminum chloride into silicon matrix during milling. The hydrolysis of the additives generates heat and alkaline hydrolysis byproducts, thereby stimulating the hydrolysis rate of silicon in the micro area. Therefore, the hydrolysis of silicon in water may act as a potential hydrogen source for portable micro fuel cells.

References

[1] Schlapbach L., Zuttel A., Nature, 414, 353 (2001).
[2] Gerboni R., Salvador E., Energy, 34, 2223 (2009).
[3] Yang J., Sudik A., Wolverton C., Siegel J.S., Chem. Soc. Rev., 39, 656 (2010).
[4] Sakintuna B., Lamari-Darkrim F., Hirscher M., Int. J. Hydrogen Energy, 32, 1121 (2007).
[5] Matsunaga T., Buchter F., Miwa K., Towata K., Zuttel A., Renewable Energy, 33, 193 (2008).
[6] Garcia R.S., Weisser D., Renewable Energy, 31, 2296 (2006).
[7] Wang Y., Shen Y., Qi K. Z., Cao Z. Q., Zhang K., Renewable Energy, 89, 285 (2016).
[8] Fan M. Q., Liu S., Sun W. Q., Fei Y., Renewable Energy, 46, 203 (2012).
[9] Liang J., Gao J., Miao N. N., Chai Y. J., Wang N., Energy, 113, 282 (2016).
[10]Shafirovich E., Diakov V., Varma A., Combust Flame, 144, 415 (2006).
[11]Liu BH, Li Z P., J. Power sources, 187, 527 (2009).
[12]Choi B., Panthi D., Nakoji M., Kabutomori T., Tsutsumi K., Int. J. Hydrogen Energy, 47, 6197 (2015).
[13]Philipsen H. G. G., OZanam F., Allongue P., Kelly J. J. Chazalviel J. N., Surface Science, 644, 180 (2016).
[14]Palik, E.D., Gray, H.F., Klein, P.B., J. Electrochem. Soc., 130, 956 (1983).
[15]Philipsen, H.G.G., Kelly, J.J., Electrochim. Acta, 54, 3526 (2009).
[16]Erogbogbo, F., Lin, T., Tucciarone, P.M., et al., Nano Lett., 13, 451 (2013).
[17]Foord, J.S., Ashraf, S., Preparation of silicon for fast generation of hydrogen through reaction with water, WO, 2011/058317
[18]S Shah, I., Koekkoe J.J., Enckevort W.J.P., Vlieg, E., Cryst. Growth Des., 9, 4315 (2009).
[19]Dai, F., Zai, J., Yi, R., Nat. Commun., 5, 3605 (2014).
[20]Tichapondwa, S.M., Focke, W.W., Del Fabbro, O., J. Energ. Mater., 29, 326 (2011).
[21]Seidel, H., Csepregi, L., Heuberger, A., and Baumgartel, H., J. Electrochem. Soc., 137, 3612 (1990).
[22]Brack, P., Dann, S.E., Wijayantha, K.G.U., Energy Sci. Eng., 3, 535 (2015).
[23]Fan M. Q., Sun L. X, XU F., Int. J. Hydrogen energy, 36, 9791 (2011).
[24]Doremus R. H., J. Phys. Chem., 80, 1773 (1976).
[25]Benschoten J. E. V., Edzwald J. K., Wter Rearch, 24, 1519 (1990).
Published
2017-07-28
Section
Full Articles