Hierarchical Dendritic Polypyrrole with High Specific Capacitance for High-performance Supercapacitor Electrode Materials

  • Weiliang Chen
  • Shuhua Pang
  • Zheng Liu
  • Zhewei Yang
  • Xin Fan Guilin University of Technology
  • Dong Fang


Polypyrrole with hierarchical dendritic structures assembled with cauliflower-like structure of nanospheres, was synthesized by chemical oxidation polymerization. The structure of polyryrrole was characterized by Fourier transform infrared spectrometer and scanning electron microscopy. The electrochemical performance was performed on CHI660 electrochemical workstation. The results show that oxalic acid has a significant effect on morphology of PPy products. The hierarchical dendritic PPyOA(3) electrodes possess a large specific capacitance as high as 744 F/g at a current density of 0.2 A/g and could achieve a higher specific capacitance of 362 F/g even at a current density of 5.0 A/g. Moreover, the dendritic PPy products produce a large surface area on the electrode through the formation of the channel structure with their assembled cauliflower-like morphology, which facilitates the charge/electron transfer relative to the spherical PPy electrode. The spherical dendritic PPyOA(3) electrode has 58% retention of initial specific capacitance after 260 cycles. The as-prepared dendritic polypyrrole with high performance is a promsing electrode material for supercapacitor.


[1] Nugen S, Baeumner HJ, Anal Bioanal Chem., 391, 451 (2008).
[2] Y. Zhu, S. Murali, M. D. Stoller, K. J.Ganesh, P. Ferreira, R. M. Wallace, K. A. Cychosz, M. Thommes, E. A. Stach, R. S. Ruoff, Science, 332, 1537 (2011).
[3] R. Kötz, M. Carlen, Electrochimi. Acta, 45, 2483 (2000).
[4] J. Zhang, X. S. Zhao, The J. Phys. Chem. C, 116, 5420 (2012).
[5] Y. Liu, Y. Zhang, G. Ma, Z. Wang, K. Liu, H. Liu, Electrochimi. Acta, 88, 519 (2013).
[6] M. Li, J. Yuan, G. Shi, Thin Solid Films, 516, 3836 (2008).
[7] T. Patois, B. Lakard, N. Martin, P. Fievet, Synth. Met., 160, 480 (2010).
[8] J. H. Chang, C. R. Aleman de Leon, I. W. Hunter, Langmuir, 28, 4805 (2012).
[9] K. Li, H. Zhang, T. Tang, Y. Tang, Y. Wang, J. Jia, J. Power Sources, 324, 368 (2016).
[10]Y. He, S. Wang, J. Mu, L. Dai, Z. Zhang, Y. Sun, W. Shi, D. Ge, Materials Science and Engineering C, 71, 43 (2017).
[11]D.Wang, Y. X. Li, Z. Shi, H. L. Qin, L.Wang, X. F. Pei, J. Jin, Langmuir, 26, 14405 (2010).
[12]J. Lei, Z. Li, X. Lu, W. Wang, X. Bian, T. Zheng, Y. Xue, C. Wang, J. Colloid Interface Sci., 364, 555 (2011).
[13]H.Wang, C. Guo, S. Zhou, X. Hu, Y. Hu, F. Li, Y. Miao, Thin Solid Films, 520, 2026 (2012).
[14]M. Onoda, K. Tada, A. Shinkuma, Thin Solid Films, 499, 61 (2006).
[15]X. Fan, Z. Yang, N. He, RSC Adv., 5, 15096 (2015).
[16]J. Zhao, J. Wu, B. Li, W. Du, Q. Huang, M. Zheng, H. Xue, H. Pang, Progress in Natural Science: Materials International, 26, 237 (2016).
[17]G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev., 41, 797 (2012).
[18]M. Mallouki, F. Tran-Van, C. Sarrazin, C. Chevrot, J.F. Fauvarque, Electrochim. Acta, 54, 2992 (2009).
[19] R. Li, Z. Chen, J. Li, C. Zhang, Q. Guo, Synth. Met., 171, 39 (2013).
[20]Z. X. Yu, Z. P. Yao, N. Zhang, Z. J. Wang, C. X. Li, X. J. Han, X. H. Wu, Z. H. Jiang, J. Mater. Chem. A, 1, 4571 (2013).
[21]C. Z. Wu, J. Dai, X. D. Zhang, J. L. Yang, Y. Xie, J. Am. Chem. Soc., 131, 7218 (2009).
[22]Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, C. M. Lieber, Science, 294, 1313 (2001).
[23]M. Bazzaoui, L. Martins, E. A. Bazzaoui, J. I. Martins, Electro-chim. Acta, 47, 2953 (2002).
[24]A. S. Liu, M. C. Bezerra, L. Y. Cho, Mater. Res. Ibero Am. J. Mater., 12, 503 (2009).
[25]G. Liu, H. Zheng, A. S. Simens, A. M. Minor,X. Song, V. S. Battaglia, J. Electrochem. Soc., 154, 1129 (2007).
[26]J. Huang, R. B. Kaner, Chem. Commun., 367 (2006).
[27]T. Tian, C. Zhang, W. Y. Hu, X. J. Kang, J. Yang, Z. Z. Gu, Anal. Meth., 5, 7066 (2013).
[28]D. P. Dubal, Z. C. Huertas, R. Holze, P. G. Romero, Electro-chim. Acta, 191, 346 (2016).
[29]H. W. Park, T. Kim, J. Huh, M. Kang, J. E. Lee, H. Yoon, ACS Nano, 6, 7624 (2012).
[30]Y. Han, M. Shen, X. Lin, B. Ding, L. Zhang, H. Tong, X. Zhang, Synth. Met., 162, 753 (2012).
[31]J. G. Wang, B. Wei, F. Kang, RSC Adv., 4, 199 (2014).
[32]W. Sugimoto, H. Iwata, K. Yokoshima, Y. Murakami, Y. Ta-kasu, J. Phys. Chem. B, 109, 7330 (2005).
[33]W. Fan, C. Zhang, W. W. Tjiu, K. P. Pramoda, C. He, T. Liu, ACS Appl. Mater. Inter., 5, 3382 (2013).
[34]M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff, Nano Lett., 8, 3498 (2008).
[35]X. P. Zhang, H. J. Guo, X. H. Li, Z. X. Wang, L. Wu, Electro-chim. Acta, 64, 65 (2012).
[36]Z. Y. Chen, C. S. Dai, G. Wu, M. Nelson, X. G. Hu, R. X. Zhang, J. S. Liu, J. C. Xia, Electrochim. Acta, 55, 8595 (2010).
[37]D. Xu, Q. Xu, K. Wang, J. Chen, Z. Chen, ACS Appl. Mater. Inter., 6, 200 (2014).
[38] Z. Li, F. Du, X. F. Bie, D. Zhang, Y. M. Cai, X. R. Cui, C. Z. Wang, G. Chen, Y. J. Wei, J. Phys. Chem. C, 114, 22751 (2010).
[39]Y. Q. Qiao, J. P. Tu, X. L. Wang, C. D. Gu, J. Power Sources, 199, 287 (2012).
[40]J. Y. Xiang, J. P. Tu, L. Zhang, X. L. Wang, Y. Zhou, Y. Q. Qiao, Y. Lu, J. Power Sources, 195, 8331 (2010).
[41]D. Ghosh, S. Giri, M. Mandal, C. K. Das, RSC Adv., 4, 26094 (2014).
[42]B. C. Kim, W. J. Cho, W. G. Lee, S. J. Kim, R. Jalili, S. Y. Park, G. G. Wallace, K. H. Yu, S. J. Chang, Synth. Met., 193, 110 (2014).
[43]K. Zhang, L. L. Zhang, X. S. Zhao, J. Wu, Chem. Mater., 22, 1392 (2010).
[44]B. C. Kim, C. J. Raj, W. J. Cho, W. G. Lee, H. T. Jeong, K. H. Yu, J. Alloys Compd., 617, 491 (2014).
[45]C. J. Raj, B. C. Kim, W. J. Cho, W. G. Lee, Y. Seo, K.H. Yu, J. Alloys Compd., 586, 191 (2014).
[46]X. Lu, H. Dou, C. Yuan, S. Yang, L. Hao, F. Zhang, J. Power Sources, 197, 319 (2012).
[47]R. Xu, J. Wei, F. Guo, X. Cui, T. Zhang, H. Zhu, K. Wang, D. Wu, RSC Adv., 5, 22015 (2015).
[48]S. Huang, P. Chen, W. Lin, S. Lyu, G. Chen, X. Yin, W. Chen, RSC Adv., 6, 13359 (2016).
[49]Y. Zhou, X. Hu, Y. Shang, C. Hua, P. Song, X. Li, Y. Zhang, A. Cao, RSC Adv., 6, 62062 (2016).
[50]Y. J. Peng, T. H. Wu, C. T. Hsu, S. M. Li, M. G. Chen, C. C. Hu, J. Power Sources, 272, 970 (2014).
Full Articles