Functionalization of Carbon Fibers with Nitrogen and Oxygen as High Performance Supercapacitor

  • Kun Luo Guilin university of technology
  • Min Zhu
  • Yuzheng Zhao Guilin University of Technology
  • Zhihong Luo


Functionalization of carbon materials with heteroatom is highly desirable for high-performance supercapacitor applications. Here, a combined method is used to prepare nitrogen and oxygen co-doped carbon fibers by acidification and N2 cold plasma treatment. Oxygen groups are introduced by acidification, and N2 groups are introduced by N2 cold plasma treatment mainly, moreover, acidification and plasma treatment time promote the increase of nitrogen content. The functionalized CFs obtained by acidification and plasma treat-ment for 60 min has high nitrogen (4.23 at.%) and oxygen (17.48 at.%) content, which shows high specific capacitance (190 F g-1 at 0.2 A g-1) and good cycling stability with maintaining about 83% of initial capacitance after 4000 cycles.


[1] J. Yan, T. Wei, B. Shao, et al., Carbon, 48, 487 (2010).
[2] M. K. Liu, S. X. He, Y. E. Miao, et al. RSC Adv., 5, 55109 (2015).
[3] Z. H. Luo, L. H. Zhu, Y. F. Huang, et al. Synth. Met., 175, 88 ( 2013).
[4] L. S. Zhang, Q. W. Ding, Y. P. Huang, et al., ACS Appl. Mater. Interfaces, 7, 22669 (2015).
[5] B. Xu, S. F. Yue, Z. Y. Sui, et al., Sci., 4, 2826 (2011).
[6] H. L. Guo, P. Su, X. F. Kang, et al., J. Mater. Chem. A, 1, 2248 (2013).
[7] H. M. Jeong, J. W. Lee, W. H. Shin, et al., Nano Lett., 11, 2472 (2011).
[8] V. H. Pham, S. H. Hur, E. J. Kim, et al.,Chem. Commun., 49, 6665 (2013).
[9] J. H. Yang, M. R. Jo, M. Kang, et al., Carbon, 73, 106 (2014).
[10]Z. Y. Sui, Y. N. Meng, P. W. Xiao, et al., ACS Appl. Mater. Interfaces, 7, 1431 (2015).
[11]O. Y. Podyacheva, S. V. Cherepanova, A. I. Romanenko, et al., Carbon, 122, 475 (2017).
[12]Z. H. Luo, M. Zhu, Y. Z. Zhao, et al., J. New Mater. Electro-chem. Systems, 20, 95 (2017).
[13]X. Q. Yang, C. F. Li, R. W. Fu, J. Power Sources, 319, 66 (2016).
[14]X. Q. Yang, H. Ma, G. Q. Zhang, Langmuir, 33, 3975 (2017).
[15]X. Q. Yang, J. L. Yu, W. J. Zhang, et al., RSC Adv., 7, 15096 (2017).
[16]X. W. Wang, G. Z. Sun, P. Routh, etal., Chem. Soc. Rev., 43, 7067 (2014).
[17]S. H. Park, J. Chae, M. H. Cho, et al., J. Mater. Chem. C, 2, 933 (2014).
[18]F. Poncin-Epaillard, J. C. Brosse, T. Falher, Macromolecules, 30, 4415 (1997).
[19]V. K.Abdelkader, S. Scelfo, C. García-Gallarín et al., J. Phys. Chem. C, 117, 16677 (2013).
[20]O. Chirila, M. Totolin, G. Cazacu, Ind. Eng. Chem. Res., 52, 13264 (2013).
[21]K. H. Lee, J. Oh, J. G. Son, etal., ACS App. Mater. Interfaces, 6, 6361 (2014).
[22]Y. Wang, Y. Y. Shao, D. W. Matson, et al., ACS Nano, 4, 1790 (2010).
[23]P.M. Korusenko, V.V. Bolotov, S.N. Nesov et al., Nucl. In-strum. Meth. Phys. Res. B, 358, 131 (2015).
[24]J. Zhang, S. Y. Wu, X. Chen, et al., J. Power Sources, 271, 522 (2014).
[25]W. Fan, Y. Y. Xia, W. W. Tjiu, et al., J. Power Sources, 243, 973 (2013).
[26]A. Ganguly, S. Sharma, P. Papakonstantinou, et al., J. Phys. Chem. C, 115, 17009 (2011).
[27]Z. L. Lin, Y. Liu, Y. G. Yao, et al.,J. Phys. Chem. C, 115, 7120 (2011).
[28]M. Vujković, N. Gavrilov, I. Pašti, Carbon, 64, 472 (2013).
[29]Z.H. Luo, L.H. Zhu, Y.F. Huang et al., Synth. Met., 175, 88 (2013).
[30]N.P. Subramanian, X. Li, V. Nallathambi et al., J. Power Sources, 188, 38 (2009).
[31]H.Y. Liu, H.H. Song, X.H. Chen, J. Power Sources, 285, 303 (2015).
[32]C. Moreno-Castilla, M. B. Dawidzuik, Carbon, 50, 3324 (2009).
Full Articles